About¶
FedPredict is an open-source project freely available on Github under the BSD-3 license. The project is led by Cláudio G. S. Capanema and has been developed across the laboratories WISEMAP (UFMG), H.IAAC (UNICAMP), and NESPED-Lab (UFV).
Citing¶
If FedPredict has been useful to you, please cite our papers.
FedPredict: Combining Global and Local Parameters in the Prediction Step of Federated Learning (original paper):
@INPROCEEDINGS{capanema2023fedpredict,
author={Capanema, Cláudio G. S. and de Souza, Allan M. and Silva, Fabrício A. and Villas, Leandro A. and Loureiro, Antonio A. F.},
booktitle={2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)},
title={FedPredict: Combining Global and Local Parameters in the Prediction Step of Federated Learning},
year={2023},
volume={},
number={},
pages={17-24},
keywords={Federated learning;Computational modeling;Neural networks;Mathematical models;Internet of Things;Distributed computing;Personalized Federated Learning;Neural Networks;Federated Learning Plugin},
doi={10.1109/DCOSS-IoT58021.2023.00012}}
A Novel Prediction Technique for Federated Learning (extended journal paper):
@ARTICLE{capanema2025@novel,
author={Capanema, Cláudio G. S. and de Souza, Allan M. and da Costa, Joahannes B. D. and Silva, Fabrício A. and Villas, Leandro A. and Loureiro, Antonio A. F.},
journal={IEEE Transactions on Emerging Topics in Computing},
title={A Novel Prediction Technique for Federated Learning},
year={2025},
volume={13},
number={1},
pages={5-21},
keywords={Servers;Costs;Training;Downlink;Adaptation models;Computational modeling;Federated learning;Quantization (signal);Context modeling;Accuracy;Federated learning plugin;neural networks;personalized federated learning},
doi={10.1109/TETC.2024.3471458}}
A Modular Plugin for Concept Drift in Federated Learning (FedPredict-Dynamic):
@INPROCEEDINGS{capanema2024@modular,
author={Capanema, Cláudio G. S. and Da Costa, Joahannes B. D. and Silva, Fabrício A. and Villas, Leandro A. and Loureiro, Antonio A. F.},
booktitle={2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)},
title={A Modular Plugin for Concept Drift in Federated Learning},
year={2024},
volume={},
number={},
pages={101-108},
keywords={Training;Accuracy;Federated learning;Geology;Concept drift;Data models;Internet of Things;Concept Drift;Personalized Federated Learning;Federated Learning Plugin;Neural Networks},
doi={10.1109/DCOSS-IoT61029.2024.00024}}